

Modeling Global Influenza Risks Using NASA Data

Richard Kiang¹, Radina Soebiyanto^{1,2}

¹NASA/GSFC, Greenbelt, MD 20771

²USRA, Columbia, MD 21044

NASA Health & Air Quality Program Review
Newport, Rhode Island
September 18-20, 2012

OUTLINE

Objectives

Collaborators

Background

Epidemic-prone respiratory diseases

National preparedness policy

H3N2v currently in the US

Human, swine and avian influenza

Disease Burden

Climatic and Environmental Dependency

Accomplishments

Outreach to and interactions with collaborating countries Climate & Influenza Circulation Workshop Central America results

Risks

Budget

Plan for the Remaining Period

OBJECTIVES

Using NASA and other data, examine how influenza circulation is affected by meteorological, environmental or other factors at major population centers around the world. Develop predictive models if there is significant dependency on these factors. Share results with public health stakeholders to strengthen their influenza surveillance and response capabilities.

COLLABORATORS

- CDC
- WHO
- Public health agencies in collaborating countries:

National Influenza Center, Guatemala

National Influenza Center, Panama

Health Surveillance Center, El Salvador

Robert Koch Institute, Germany

Institute of Public Health, Norway

Statens Serum Institute, Denmark

Consejería de Sanidad, Spain

Centre for Disease Control, Israel

National Institute of Public Health, Slovenia

Medical Research Institute, Kenya

Health Protection Agency, United Kingdom

.

Epidemic-prone acute respiratory diseases have no borders, and can be spread rapidly around the world. Global, coordinated surveillance & control efforts are essential.

2003 SARS

Spread to 37 countries in weeks

2004 Avian Influenza – A(H5N1)v

Spread to 62 countries since 2004. There are still frequent outbreaks in Indonesia, Egypt, and some Southeast Asian countries.

2009 Pandemic - A(H1N1)pdm09

Spread to 48 countries in a month despite heightened public awareness and substantial preventive and control efforts

The 2003 SARS Outbreaks

SARS increased public health as well as the general public's awareness of the seriousness of pandemic, and provided a real test ground for preventing and controlling respiratory disease.

Human coronavirus

Global Spread of Pandemic H1N1 2009

July

August

June

April

September

National Strategy for Pandemic Influenza

Three Pillars:

- Preparedness & Communication
- Surveillance & Detection
- Response & Containment

H3N2v Cases Since 12/11/2011

Burden of Influenza

US

- 0.2 M hospitalizations and 36,000 deaths annually
- Hospitalization rate highest in children
- 90% of deaths are older than 65 years
- 75% of deaths are not coded pneumonia or influenza

World

- 3-5 M severe cases annually
- 0.25-0.5 M deaths annually

Economic Burden

- Direct health care?
- Societal costs?
- Nearly \$10 B annual economic loss for US alone

Projected Deaths in US For Pandemics With Severity 1-5

Category	CFR	
1	< 0.1 %	
2	0.1 - 0.5 %	
3	0.5 - 1.0 %	
4	1.0 - 2.0 %	
5	> 2.0 %	

Pandemic	Deaths in US
1918 Spanish Flu	~ 500 K
1957 Asian Flu	70 K
1968 HK Flu	34 K

Environmental & Sociological Factors Affecting Human Influenza Transmissions

Change in Transmission with Increase in Factor

Virus Survivorship Temperature
Humidity
Vapor pressure
Solar irradiance

Host Susceptibility Sunlight exposure
Nutrition
Previous infections

Transmission Efficiency

Temperature
Humidity
Vapor pressure
Precipitation
ENSO
Air travel
Holidays

Biological Evidence Empirical Evidence

Empirical Evidences of Environmental Influences On Influenza Transmissions

- Latitudinal variability in influenza transmission pattern
- Experimental findings on the effect of meteorological factors in influenza transmission, virus survivorship and host susceptibility

Discussed	Showed Interest	Sent Data	Other Sources
			Belgium
Cambodia	Cambodia		Casab Danishlia
Denmark	Denmark		Czech Republic
		El Colvador	
El Salvador	El Salvador	El Salvador	
Germany	Germany	Germany	
Guatemala	Guatemala	Guatemala	
Indonesia	Indonesia		
Israel	Israel	Israel	
Kenya	Kenya	Kenya	
			The Netherlands
Norway	Norway	Norway *	
Panama	Panama	Panama	
Russian Federation	Russian Federation		
			Singapore
Slovenia	Slovenia	Slovenia	
South Africa	South Africa		
Spain	Spain	Spain	
Switzerland	Switzerland		
Thailand	Thailand		
UK	UK		

Climate and Influenza Circulation Workshop

Antigua, Guatemala, September 26-27, 2011

Taller sobre Modelizacion y Circulacion de Influenza, Basado en Mediciones Climaticas, Meteorologicas y Ambientales

Study Areas in Central America

INFLUENZA DATA

Diagnosis of influenza through detecting:

Live virus

Viral culture — necessary for strain surveillance & vaccine strain selection and production

Viral protein (antigen)

Rapid detection kits — for typing only; false negative

Immunofluorescence assay — for typing/subtyping

Viral genetic material (nucleic acid)

RT-PCR — for typing/subtyping

Immune antibody

Serologic tests — collection time important

METEOROLOGICAL DATA

NASA Satellites

TRMM — precipitation

MODIS — land surface temperature

NASA Climate Model

GLDAS — precipitation, temperature, specific humidity

Ground Stations

min/max/mean temperature, relative humidity, dew point, solar irradiance, etc.

Meteorological Parameters

Parameters with Significant Influence On Influenza Circulations

Guatemala Department, Guatemala

 $R^2 = 0.64$

Mean temperature: RR = 2.6, 95% CI = 1.8 - 3.7

Precipitation: RR = 1.1, 95% CI = 1.0 - 1.2

Panama Province, Panama

 $R^2 = 0.64$

Mean temperature: RR = 3.4, 95% CI = 2.2 - 5.2

Precipitation: RR = 1.2, 95% CI = 1.1 - 1.3

San Salvador Province, El Salvador

 $R^2 = 0.51$

Specific humidity: RR = 2.5, 95% CI = 1.9 - 3.3

Increments: 1°C in temperature, 1 mm in precipitation, 1 g/Kg in specific humidity.

Actual and Modeled Influenza Cases

RISK AREAS

INFLUENZA DATA

Data Availability

Data Accuracy

Data Paucity

SATELLITE DATA

Data Availability

GROUND STATION DATA

Data Accuracy

Data Paucity

BUDGET

Second Year Funding: \$75,598

(2/15/2012 - 2/14/2013)

PLAN FOR THE REMAINING PERIOD

- Publish Central America results
- Complete analyses and modeling for some of the remaining countries
- Outreach to additional countries if needed
- Write manuscripts for the remaining countries
- Write final report

